

PyScrapper

[image: _images/pyscrapper.svg]
 [https://badge.fury.io/py/pyscrapper][image: _images/pyscrapper1.svg]
 [https://pepy.tech/project/pyscrapper]PyScrapper is a web scrapping tool. It helps to scrape webpages and form a meaningful json object, as per the given configuration. Configuration is what tells the scrapper, which blocks of the html needs to be parsed and how they should be structurized for ease of use.

Table of Contents

	User Guide

	Version History

	API Reference

User Guide

Installing PyScrapper

The preferred installation method is by using pip [http://pypi.python.org/pypi/pip/]:

$ pip install pyscrapper

If you don’t have pip installed, you can easily install it by downloading and running
get-pip.py [https://bootstrap.pypa.io/get-pip.py].

If, for some reason, pip won’t work, you can manually download the PyScrapper distribution [https://pypi.python.org/pypi/pyscrapper/] from PyPI, extract and then install it:

$ python setup.py install

Code examples

The source distribution contains the examples directory where you can find many working
examples for using PyScrapper in different ways. The examples can also be
browsed online [https://github.com/pavanyekabote/pyscrapper/tree/master/examples].

Basic Concepts

PyScrapper has an assembly module which is an assembly of base modules:

	urlloaders

	observers

	managers

UrlLoaders are different types of url request makers such as a Web Browser,
a simple GET request etc., anything which is capable of loading an url and give the resultant html

Observers are those elements, which are triggered when an url loading is completed and scrapping is completed.

Managers manage the load balancing tasks and restrict the number requests executing parallely
as per the user’s configuration. They load the url in an urlloader, once the result is received
from the observer then parse the html content using scrapping module, and again pushes back the final scrapped result to a user registered observer.

Now you might have got an abstract idea, on what each module of assembly does. Let’s have deep dive into each of these modules.

Observers

pyscrapper.assembly.observers

The observers module has two interfaces

	
	Observable :

	
	An Observable can hold a list of observers.

	When an event occurs, such as url loaded / scraping completed , then all the observers are notified with the change.

	
	Observer :

	
	An Observer is capable of listening to a change and trigger the corresponding operations.

UrlLoaders

pyscrapper.assembly.urlloaders

	The UrlLoader interface inherits the Observable interface

	Any class implementing the UrlLoader interface is capable of holding and notifying a list of observers.

Managers

pyscrapper.assembly.managers

	Manager acts both, as Observable to the user requests and Observer to the UrlLoader

	As an Observable, the manager holds all the Observers, defined by the user / developer, who are interested in receiving data when published.

	As an Observer, the manager becomes is registered with UrlLoader(which is also an Observable), to get notified on url response is received.

Scrapper Config

The configuration is the major part, which tells the scrapper, which blocks of the html needs to be parsed and how they should be structurized for ease of use.

	Building blocks of configuration.

	listItem (string): The list item selector.

	data (string | object): The fields to include in the list objects:

	<fieldName>(string | object): The selector or an object containing:

	selector (string): The selector.

	attr (string): If provided, the value will be taken based on the attribute name.

	eq (int): If provided, it will select the nth element.

	function(a callable function): If provided, it will be called with the current block’s data, obtained after parsing the html of current block, on which the user can perform any operation and must return a result… which is then considered as final result of that block.

Warning

(listItem, data, selector, attr, eq, function) all of these are keywords. Do not ever try to use any of the listed keywords as your field names, because it may conflict the process of parsing.

Check out the examples [https://github.com/pavanyekabote/pyscrapper/tree/master/examples] , to get better understanding.

Version History

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyscrapper	

 	
 	
 pyscrapper.assembly.managers	

 	
 	
 pyscrapper.assembly.observers	

 	
 	
 pyscrapper.assembly.urlloaders	

 	
 	
 pyscrapper.scrapper	

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyscrapper	

 	
 	
 pyscrapper.assembly.managers	

 	
 	
 pyscrapper.assembly.observers	

 	
 	
 pyscrapper.assembly.urlloaders	

 	
 	
 pyscrapper.scrapper	

Index

 A
 | B
 | C
 | G
 | L
 | O
 | P
 | R
 | S
 | U

A

 	
 	add_callback() (pyscrapper.assembly.observers.CallbackObserver method)

 	add_observer() (pyscrapper.assembly.managers.StandardScrapeManager method)

 	(pyscrapper.assembly.observers.Observable method)

 	(pyscrapper.assembly.urlloaders.BrowserLessUrlLoader method)

 	(pyscrapper.assembly.urlloaders.PhantomUrlLoader method)

 	
 	add_url_callback() (pyscrapper.assembly.observers.CallbackObserver method)

B

 	
 	BaseScrapeManager (class in pyscrapper.assembly.managers)

 	
 	BrowserLessUrlLoader (class in pyscrapper.assembly.urlloaders)

C

 	
 	CallbackObserver (class in pyscrapper.assembly.observers)

G

 	
 	get_scrapped_config() (pyscrapper.scrapper.PyScrapper method)

L

 	
 	load_url() (pyscrapper.assembly.urlloaders.BrowserLessUrlLoader method)

 	(pyscrapper.assembly.urlloaders.PhantomUrlLoader method)

 	(pyscrapper.assembly.urlloaders.UrlLoader method)

O

 	
 	Observable (class in pyscrapper.assembly.observers)

 	Observer (class in pyscrapper.assembly.observers)

 	on_parse_completed() (pyscrapper.assembly.managers.StandardScrapeManager method)

 	(pyscrapper.assembly.observers.CallbackObserver method)

 	(pyscrapper.assembly.observers.Observer method)

 	
 	on_url_loaded() (pyscrapper.assembly.managers.StandardScrapeManager method)

 	(pyscrapper.assembly.observers.CallbackObserver method)

 	(pyscrapper.assembly.observers.Observer method)

P

 	
 	PhantomUrlLoader (class in pyscrapper.assembly.urlloaders)

 	PyScrapper (class in pyscrapper.scrapper)

 	pyscrapper.assembly.managers (module)

 	
 	pyscrapper.assembly.observers (module)

 	pyscrapper.assembly.urlloaders (module)

 	pyscrapper.scrapper (module)

R

 	
 	remove() (pyscrapper.assembly.observers.CallbackObserver method)

 	remove_observer() (pyscrapper.assembly.observers.Observable method)

 	
 	remove_url_callback() (pyscrapper.assembly.observers.CallbackObserver method)

 	RequestHandler (class in pyscrapper.scrapper)

S

 	
 	scrape() (pyscrapper.assembly.managers.BaseScrapeManager method)

 	(pyscrapper.assembly.managers.StandardScrapeManager method)

 	scrape_content() (in module pyscrapper.scrapper)

 	shutdown() (pyscrapper.assembly.managers.BaseScrapeManager method)

 	(pyscrapper.assembly.managers.StandardScrapeManager method)

 	(pyscrapper.assembly.urlloaders.BrowserLessUrlLoader method)

 	(pyscrapper.assembly.urlloaders.PhantomUrlLoader method)

 	(pyscrapper.assembly.urlloaders.UrlLoader method)

 	
 	StandardScrapeManager (class in pyscrapper.assembly.managers)

U

 	
 	UrlLoader (class in pyscrapper.assembly.urlloaders)

pyscrapper.assembly.urlloaders

API

	
class pyscrapper.assembly.urlloaders.UrlLoader(pool, headers=None)

	Bases: pyscrapper.assembly.observers.Observable

	An interface which provides methods to load an url and shutdown current urlloader.

	Each UrlLoader is a sub class of Observable, which lets the urlloader hold and notify the observers on url is loaded.

	
load_url(url, **kwargs)

	Loads url using any of selected pool (ThreadPool / ProcessPool)

	
shutdown(wait=True)

	Shuts down the UrlLoader
:param wait=True: waits until existing queue of url’s has been loaded

	
class pyscrapper.assembly.urlloaders.BrowserLessUrlLoader(pool=None, max_workers=None, headers=None, **kwargs)

	Bases: pyscrapper.assembly.urlloaders.UrlLoader

A concrete implementation of UrlLoader interface,
which has a ThreadPoolExecutor to execute the URL requests concurrently,
in a browser less context (Incapable of lazy loading by javascript).
On URL response is received, The response is pushed to the observers: Observer it holds.

	
add_observer(observer: pyscrapper.assembly.observers.Observer)

	Add observer to observers list

	
load_url(url, **kwargs)

	Load the given url as http request and push response to observers

	
shutdown(wait=True)

	Shuts down the UrlLoader
:param wait=True: waits until existing queue of url’s has been loaded

	
class pyscrapper.assembly.urlloaders.PhantomUrlLoader(pool=None, driver_path='/home/docs/checkouts/readthedocs.org/user_builds/pyscrapper/checkouts/latest/pyscrapper/resources/phantomjs', max_workers=None, headers=None, **kwargs)

	Bases: pyscrapper.assembly.urlloaders.UrlLoader

A concrete implementation of UrlLoader interface,
which has a ThreadPoolExecutor to execute the URL requests concurrently,
in a browser based context (capable of handling lazy loading by javascript).
It uses PhantomJS headless web browser to load the urls.
On URL response is received, The response is pushed to the observers: Observer it holds.

	
add_observer(observer: pyscrapper.assembly.observers.Observer)

	Add observer to observers list

	
load_url(url, **kwargs)

	
	Parameters

	
	url – URL to be loaded by the url loader

	pre_exec – This parameter takes a method/function as input and calls that method/function
passing the selenium web driver object into it. The method/function is called before given url is loaded by the driver

	post_exec – This parameter takes a method/function as input and calls that method/function passing the selenium web driver
object into it. The method/function is called after given url is loaded by the driver

Note

These features pre_exec, post_exec allow developers to perform some extra operations on the web driver, by directly accessing the webdriver. This has been provided with an intuition that, some elements take long time to appear on the web browser. But, the web browser

	
shutdown(wait=True)

	Shuts down the UrlLoader
:param wait=True: waits until existing queue of url’s has been loaded

pyscrapper.assembly.managers

API

	
class pyscrapper.assembly.managers.BaseScrapeManager(url_loader: pyscrapper.assembly.urlloaders.UrlLoader)

	Bases: pyscrapper.assembly.observers.Observable

A scrape manager which takes in an UrlLoader instance,
It manages takes responsibility to load all the urls and scrape them
as per the given configuration.

	
scrape(url, config, **kwargs)

	This method intakes url, configuration.
Returns an unique id, which refers to current scrape request.
The response of current request is pushed, into the callback methods with
the unique id referring to the request made

	Returns

	An unique id, which is generated on scrape request is created.

	
shutdown()

	Shuts down the current manager

	
class pyscrapper.assembly.managers.StandardScrapeManager(url_loader: pyscrapper.assembly.urlloaders.UrlLoader)

	Bases: pyscrapper.assembly.managers.BaseScrapeManager, pyscrapper.assembly.observers.Observer

	
add_observer(observer: pyscrapper.assembly.observers.Observer)

	Add observer to observers list

	
on_parse_completed(url, obj, **kwargs)

	This method is called when parsing of response html is completed, as per given configuration.

	
on_url_loaded(url, response, **kwargs)

	This method is called when url’s http response is received

	Parameters

	
	url – The url which is being loaded

	response – The html response of the http request

	
scrape(url, config, **kwargs)

	This method intakes url, configuration.
Returns an unique id, which refers to current scrape request.
The response of current request is pushed, into the callback methods with
the unique id referring to the request made

	Returns

	An unique id, which is generated on scrape request is created.

	
shutdown(wait=True)

	Shuts down the current manager

pyscrapper.assembly.observers

API

	
class pyscrapper.assembly.observers.Observable

	An observable who holds a list of observers.
Any concrete class implementing this interface can add / remove observers

	
add_observer(observer: pyscrapper.assembly.observers.Observer)

	Add observer to observers list

	
remove_observer(observer: pyscrapper.assembly.observers.Observer)

	Removes an observer from list of observers.

	
class pyscrapper.assembly.observers.Observer

	An observer, which is observed and updated / notified on change

	
on_parse_completed(url, obj, **kwargs)

	This method is called when parsing of response html is completed, as per given configuration.

	
on_url_loaded(url, response, **kwargs)

	This method is called when url’s http response is received

	Parameters

	
	url – The url which is being loaded

	response – The html response of the http request

	
class pyscrapper.assembly.observers.CallbackObserver(callbacks=None, url_callbacks=None)

	Bases: pyscrapper.assembly.observers.Observer

An observer which calls given list of callback methods,
on completion of actual Observable’s task
url_callbacks=None : callback methods, which need to be called on loading of url is completed
callbacks=None : callback methods, which need to be called on parsing is completed

	
add_callback(callback)

	Add callback method to callbacks list…

	
add_url_callback(callback)

	Add callback method to url_callbacks list

	
on_parse_completed(url, obj, *args, **kwargs)

	This method is called when parsing of response html is completed, as per given configuration.

	
on_url_loaded(url, response, *args, **kwargs)

	Calls back the callbacks when url is loaded

	
remove(callback)

	Remove callback method from callbacks list…

	
remove_url_callback(callback)

	Remove callback method from url callbacks list

pyscrapper.scrapper

Scrapper

The core scrapping module of Pyscrapper. Once the html markup is loaded from an URL, then this module comes into play.
It parses the html content and form the final json object, as given in the configuration.

API

	
class pyscrapper.scrapper.PyScrapper(html, config, is_list=False, name='')

	Each block of given configuration is parsed by an object of PyScrapper class.

	Parameters

	
	html (str) – html field takes the html markup that needs to be scrapped

	config (dict) – This field takes the configuration, which tells the parser
* which part of html need to be taken and parsed
* how the parsed data has to be structured

	
get_scrapped_config()

	This method returns the parsed content

	
class pyscrapper.scrapper.RequestHandler

	This class, holds the basic configurations by which the synchronous scrape_content method loads url.

	MAX_WORKERS

	

	This property limits the RequestHandler to perform MAX_WORKERS number of request only, when the url loading is done in a multi threaded/ multi process environment.

	Default value is set to count of cpu’s in current system.

Note

Eg. RequestHandler.MAX_WORKERS = 2 # Allows only 2 url loaders to be executed parallelly when application is in parallel execution environment.

	
pyscrapper.scrapper.scrape_content(url, config, to_string=False, raise_exception=True, window_size=(1366, 784), **kwargs)

	It processes, the operation in a synchronized way.
Takes url, configuration as parameters,
loads the given url in web browser, then parses the html
as per the given configuration data.

	Parameters

	
	url (string) – URL of webpage to be scrapped

	config (dict) – configuration dictionary which describes which part of html should be scraped and
how it should be modelled.

	to_string (bool) – returns the scrapped and modelled json as string

	Returns

	parsed data

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 PyScrapper

 		
 User Guide

 		
 Installing PyScrapper

 		
 Code examples

 		
 Basic Concepts

 		
 Observers

 		
 UrlLoaders

 		
 Managers

 		
 Scrapper Config

 		
 Version History

 		
 API Reference

_static/up-pressed.png

_static/up.png

_static/plus.png

